Proof of Tomaszewski's conjecture on randomly signed sums

نویسندگان

چکیده

We prove the following conjecture, due to Tomaszewski (1986): Let X=∑i=1naixi, where ∑iai2=1 and each xi is a uniformly random sign. Then Pr⁡[|X|≤1]≥1/2. Our main novel tools are local concentration inequalities an improved Berry-Esseen inequality for Rademacher sums.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on direct sums of baer modules

the notion of baer modules was defined recently

Tomaszewski's Problem on Randomly Signed Sums: Breaking the 3/8 Barrier

Let v1, v2, . . . , vn be real numbers whose squares add up to 1. Consider the 2 n signed sums of the form S = ∑ ±vi. Holzman and Kleitman (1992) proved that at least 38 of these sums satisfy |S| 6 1. This 3 8 bound seems to be the best their method can achieve. Using a different method, we improve the bound to 13 32 , thus breaking the 38 barrier.

متن کامل

Partial proof of Graham Higman's conjecture related to coset diagrams

Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...

متن کامل

A proof of the conjecture of Cohen and Mullen on sums of primitive roots

We prove that for all q > 61, every non-zero element in the finite field Fq can be written as a linear combination of two primitive roots of Fq . This resolves a conjecture posed by Cohen and Mullen.

متن کامل

Proof of Sun's Conjecture on the Divisibility of Certain Binomial Sums

In this paper, we prove the following result conjectured by Z.-W. Sun: (2n− 1) ( 3n n ) ∣∣∣∣ n ∑ k=0 ( 6k 3k )( 3k k )( 6(n− k) 3(n− k) )( 3(n− k) n− k ) by showing that the left-hand side divides each summand on the right-hand side.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2022

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2022.108558